Probabilistic Graphical Models Parameter Learning with Transferred Prior and Constraints
نویسندگان
چکیده
Learning accurate Bayesian networks (BNs) is a key challenge in real-world applications, especially when training data are hard to acquire. Two approaches have been used to address this challenge: 1) introducing expert judgements and 2) transferring knowledge from related domains. This is the first paper to present a generic framework that combines both approaches to improve BN parameter learning. This framework is built upon an extended multinomial parameter learning model, that itself is an auxiliary BN. It serves to integrate both knowledge transfer and expert constraints. Experimental results demonstrate improved accuracy of the new method on a variety of benchmark BNs, showing its potential to benefit many real-world problems.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملThesis Proposal Parallel Learning and Inference in Probabilistic Graphical Models
Probabilistic graphical models are one of the most influential and widely used techniques in machine learning. Powered by exponential gains in processor technology, graphical models have been successfully applied to a wide range of increasingly large and complex real-world problems. However, recent developments in computer architecture, large-scale computing, and data-storage have shifted the f...
متن کاملIntroduction to Probabilistic Graphical Models
Over the last decades, probabilistic graphical models have become the method of choice for representing uncertainty in machine learning. They are used in many research areas such as computer vision, speech processing, time-series and sequential data modelling, cognitive science, bioinformatics, probabilistic robotics, signal processing, communications and error-correcting coding theory, and in ...
متن کاملCS 6782: Fall 2010 Probabilistic Graphical Models
In a probabilistic graphical model, each node represents a random variable, and the links express probabilistic relationships between these variables. The structure that graphical models exploit is the independence properties that exist in many real-world phenomena. The graph then captures the way in which the joint distribution over all of the random variables can be decomposed into a product ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015